
Abstract
Stackful coroutine, also known as user-space cooperative
thread, offers the promise of more intuitive and accessible
concurrent programming. With the growing demand for
highly concurrent programs, stackful coroutine has gained
increasing interest in recent years. It has, however, been
much maligned for poor performance compared to stackless
coroutine because of its heavy reliance on context switching.
In this paper we perform in-depth measurement and analysis
of several advanced implementations of stackful and stack-
less coroutine. Our analysis indicates that although current
implementations of stackful coroutines are indeed signif-
icantly slower than their stackless counterparts, stackful
coroutine is not intrinsically slow. Rather, stackful coroutine
performs poorly mainly because the current implementa-
tions do not fully leverage the fact that control flow is coop-
eratively passed among stackful coroutines. Based on this
observation, we propose context-aware context switching
(CACS) among stackful coroutines. Instead of a full set of
registers, CACS saves (restores) only the minimum neces-
sary set of registers according to the caller (callee) context.
It also enables the branch to be inlined at the caller site
so that branch prediction is more accurate. We have imple-
mented CACS in Photon, a highly optimized libOS based
on coroutine. Performance measurements show that with
the optimizations proposed in this paper, stackful corou-
tine out-performs stackless coroutine in most cases, and ties
in the generator paradigm which is an especially challeng-
ing scenario for stackful coroutine. We also suggest a few
supporting changes in computer architecture, programming
language, compiler and OS that can further improve the per-
formance of stackful coroutine. Our work is open-sourced
on GitHub1.

1 Introduction
Modern servers may have network connectivity with band-
width that is on the same order as that of its memory or CPU
interconnect [28], and host dozens of SSDs each offering
more than 10GB/s of throughput [35]. With such advances
in the hardware I/O capability, software stacks must become
both highly concurrent and efficient to unleash the growing
performance potential of the modern server. Recent soft-
ware improvements to this effect include the development
of high-performance I/O frameworks, such as DPDK [6] and
SPDK [11], that budget to process a single packet or request
in terms of CPU cycles.

1For blind review purpose, we have put related resources at https://gith
ub.com/for-blinded-review. We’ll try to merge them to corresponding
upstreams after review.

Coroutine has also been gaining increasing attention in
recent years to handle concurrent programming efficiently
and effectively. Programming languages that have or are em-
bracing coroutine include C++20 [3], Rust 1.39 [2] in 2019, C#
5.0 [16] in 2012, Python 3.5 [20] in 2015, JavaScript ES2017 [9],
Swift 5.5 [12] in 2021, Java 21 [8] in 2023, Dragonwell 8 [1]
in 2019, etc. Golang [15] has provided coroutine (goroutine)
as a first-class construct since its initial design.

There are two types of coroutine — stackless and stackful.
The former shares a default stack among all the coroutines
while the latter assigns a separate stack to each coroutine.
With stackless coroutine, the code is transformed into event
handlers at compile time, and driven by an event engine
at run time, i.e. the scheduler of stackless coroutine. Trans-
ferring control of CPU to a stackless coroutine is merely
a function call with an argument pointing to its context.
Conversely, transferring CPU control to a stackful coroutine
requires a context switch. This context switch is widely re-
garded as a heavy-weight operation when compared to the
function call. In reality, this context switch is much more
efficient than a kernel task switch because it does not incur
the overhead of a round-trip transition from user-space to
kernel-space, and it is also possible to perform optimizations
by making use of the cooperative nature of the coroutines
within a single program.

Nevertheless, due primarily to the perceived performance
concern (among other issues), more and more systems are
abandoning stackful coroutine for stackless coroutine, espe-
cially systems that emphasize performance such as C++20,
Rust, C#, Swift, etc. There was once a heated debate [30, 38–
40] in the C++ standards committee over stackless or stackful
coroutine for C++20. Although stackful coroutine is gener-
ally easier to use, more compatible with existing codebases
and more efficient in many scenarios, the proponents of
stackless coroutine constructed a microbenchmark [18] to
show that “fibers (stackful coroutines) have 20 times larger
context switch overhead” than stackless coroutine [39]. The
defendants of stackful coroutine did not give a direct re-
sponse to the challenge [38], and ultimately the committee
adopted stackless coroutine for C++20. We believe that the
demonstrated outsized difference in overhead played an im-
portant role in this decision, as well as similar decisions for
other systems.

In this paper we argue that stackful coroutine is not intrin-
sically slow. It just has not been implemented to fully exploit
the cooperative nature of stackful coroutine, and there are
opportunities to make context switching more efficient. We
perform in-depth measurement and analysis of several cur-
rent coroutine implementations. Based on the analysis, we
propose context-aware context switching (CACS) to improve

1

This is a manuscript submitted to ASPLOS’24. It was highly affirmed by the anonymous reviewers for its value in design of coroutine, as
well as related components of systems software and computer architecture. It was, however, rejected due to lack of novelty: the key
proposal, CACS, had already been implemented before in libfringe. So we give up the attempt to publish this manuscript as a research
paper in ASPLOS, nor other academic conferences. And we upload it to Photon’s project site as-is, hoping everyone gets the message
that stackful coroutine has been made fast.

Stackful Coroutine Made Fast
Submission #17 for ASPLOS’24

Huiba Li, Rui Du, Sinan Lin and Windsor Hsu
Alibaba Cloud

https://github.com/for-blinded-review
https://github.com/for-blinded-review
lihuiba
附注
“lihuiba”设置的“Accepted”

the efficiency of register saving, accuracy of branch predic-
tion, and hit rate of CPU cache. CACS leverages the fact
that context switches among stackful coroutines occur only
at specific caller sites. With CACS, each context switching
saves only the registers that will be needed after it switches
back, and these registers are determined by the compiler
at the caller site. CACS also enables the branching to be
inlined at the caller site so that branch prediction is more
accurate. We apply CACS to optimize stackful asymmetric
coroutine by designing in-stack generator.With CACS, it per-
forms as efficiently as the corresponding stackless coroutine
implementation. We also introduce a new function calling
convention named preserve_none as an expansion of CACS
for all switching functions to further improve performance.
With our work the cost of yield operation (scheduling and
switching to the next coroutine) is greatly reduced. CACS is
implemented in Photon [10], a sophisticated libOS based on
coroutine. The proposed calling convention is implemented
in Clang [4].
On the other hand, we demonstrate that stackless corou-

tine is inefficient in handling multi-level invocation, an in-
evitable pattern in real-world programs. It even incurs an
overhead proportional to the length of the call chain when
dealing with recursion. Despite there are optimizations that
can reduce this overhead to a constant in some scenarios, it
is still much higher than the corresponding overhead with
stackful coroutine. Our results suggest that stackful corou-
tine is the better choice for efficient concurrency.

The contributions of this paper are as follows:
1. We conduct an in-depth performance characterization

of state-of-the-art implementations of both stackless
and stackful coroutines, analyzing the root causes for
various measured differences.

2. We observe that there are untapped opportunities
to improve the performance of stackful coroutine by
exploiting the fact that coroutines are cooperatively
scheduled user-space threads.

3. We propose and implement CACS to optimize the per-
formance of stackful coroutine, and demonstrate that
it can effectively eliminate the performance concern
of context switching, thereby raising the performance
upper bound of stackful coroutine. CACS makes stack-
ful coroutine even feasible for challenging scenarios
such as the generator paradigm. The overall result
is promising: a single Xeon CPU core can perform a
yield operation in ~1.52 ns or ~3.34 cycles, compara-
ble to the cost of a function call, and out-performing
state-of-the-art result by several times.

4. While we demonstrate promising results with CACS,
the current implementation is still constrained by ex-
isting architecture, programming language, compiler
and OS. We suggest several supporting changes in
these areas that can further improve the performance
of stackful coroutine.

Ti
m

e
C

os
t o

f a
n

Ite
ra

tio
n

(n
s)

0

15

30

45

60

original no assertion -O3 inlining context

Boost
C++20

Figure 1. Breakdown of the ~20 times overhead of Boost
stackful coroutine compared to C++20 stackless coroutine
in the micro benchmark of sequence’s sum.

2 Performance Measurement of Coroutines
In this section, we carry out in-depth measurement of corou-
tine implementations, trying to find out how such a big dif-
ference as “20 times” [39] in speed was formed, and whether
there are opportunities for optimizations. We begin with
the micro benchmark of sequence’s sum that was used in
the test, then expand its structure in two ways respectively:
callee recursion (Hanoi) and caller nesting (write_fully) with
concurrent execution. These expansions represents some
common scenarios in real applications.
Besides the classification of stackful or stackless corou-

tine, they can also be classified as symmetric or asymmetric
coroutine [37]. The former provides a single control-transfer
operation that allows coroutines to explicitly pass control
between themselves. The latter provides two control-transfer
operations: one for invoking a coroutine and one for sus-
pending it, possibly carrying return value(s) to the caller.
Asymmetric coroutine can be resumed repeatedly to gen-
erate a series of return values. That’s why it is also called
generator.

2.1 Coroutines under the Microscope
We revisit the performance benchmark [18] that was used in
C++ committee, and we are able to reproduce similar results
in our environment, with latest compiler (Clang 15.0.3), latest
dependent library (Boost 1.81), and trivial changes to the
source code (e.g., removing the “experimental” namespace).
The benchmark includes two cases, respectively for stackful
coroutine implemented by Boost.Coroutine2 and stackless
coroutine built-in C++20. Both of them consist of a generator
that produces natural number from 𝑁 down to 1, and a
reducer that sums the numbers up.
We have managed to reduce the overhead of stackful

coroutine down to ~4 times with some simple efforts such
as: disabling assertion, raising up optimization level from
-O2 to -O3, forced inlining all possible functions involved in
the kernel loops, and re-implementing a third test case using
Boost.Context directly. The overall result is depicted in Fig 1.

2

__attribute__ ((noinline))
generator<uint64_t>
producer(uint64_t count) {
for (; count!=0; −−count)
co_yield count;

}

__attribute__ ((noinline))
generator<uint64_t>
producer(uint64_t count) {
while(count)
co_yield count−−;

}

Figure 2. Stackless generator with for-loop and while-loop.

To find possible opportunities for further improvements,
we analyze the implementation by disassembling its machine
code. We find that a function jump_fcontext() contributes to
most of the remaining overhead. It is a handcrafted assem-
bly function consisting 24 instructions to perform context
switching. It saves and restores a set of registers including
r12~r15, rbx, rbp, x87 FPU control word (FCW), MMX/SSE
control status register (MXCSR) and finally rsp, the stack
pointer register. The list is determined by the function calling
convention in use, and classic context switching functions
save and restore all these registers in order to conform to
the convention. But most of these registers are not used at
all in such simple case as this, and it is a great waste to do
it blindly. We believe it is better for the compiler to smartly
determine what actually needs to be done before and after
each context switching operation at the calling site, and do
it all by itself. We have realized this optimization with some
inline assembly code and a simple optional compiler exten-
sion. As a result, the cost of a context switching becomes
similar to that of an ordinary function call. We’ll describe
this work in section 3.
It’s also worth noting that, when we change the stack-

less producer()’s implementation from for loop to simpler
and identical while loop, as shown in Fig. 2, its time cost
increases unexpectedly by ~50% (see section 4 for details).
We suspect it’s due to the limitation of current compiler op-
timization for stackless coroutine, as it involves somewhat
complex translation of the code.

2.2 Coroutines in the Telescope
Stackless coroutine can be inefficient when it yields some
value to the original caller from a deep call chain of recursion,
because the operation is designed to be targeting at the direct
caller, and it may incur a high overhead of 𝑂 (𝑛) to cross
multiple levels. This scenario is depicted in Fig 3.

coroutine coroutine coroutinecaller

call call call

yield yield yield

Figure 3. The recursive call chain of stackless coroutine
implies a possible𝑂 (𝑛) complexity in most implementations.

1 void Hanoi(char n, char from, char to , char aux, Callback cb) {
2 if (n==0) return ;
3 Hanoi(g, n−1, from, aux, to);
4 cb(n, from, to); // move the n−th disk
5 Hanoi(g, n−1, aux, to , from);
6 }

Figure 4. Hanoi using function recursion & callback.

Many important recursive algorithms fits this pattern,
such as traversing a tree and yielding every node to the
caller, or performing a depth-first-search in a graph (or other
state spaces) and yielding each item found. Most coroutine
implementations are subject to this problem, such as C#,
Python, etc. Python provides “yield from” for this scenario
to forward values from multi-level invocations, but only as a
syntax sugar without any improvement to its performance.
Rust has experimental support for generator, and it does not
yet support multi-level invocations of generators. C++23 in-
troduced an optimized implementation as std::generator,
which achieves 𝑂 (1) delivery for multi-level invocations in
stackless coroutines, by sophisticated manipulation of corou-
tine handles. But it still incurs a great overhead compared to
generators based on stackful coroutine.

We study this problem by solving the classic puzzle Tower
of Hanoi in both stackful and stackless coroutine. As depicted
in Fig. 4, it is a simple recursive algorithm consisting only 4
lines of effective code. It is good a representative for recursion
in real applications. We reimplement it respectively with
C++20 stackless coroutine, C++23 stackless generator, and
Boost stackful coroutine.
The results are shown in Fig 5, as relative time cost of

coroutines compared to classic function recursion, so as
to eliminate the exponential growth of the algorithm, and

Re
la

tiv
e

Ti
m

e
C

os
t (

C
++

, C
#)

0

12

24

36

48

60

of Disks in the Towers of Hanoi
2 4 6 8 10 12 14 16 18 20

C++20 Coroutine
C++23 std::generator
C++ Boost (stackful)

Figure 5. Time cost of coroutine recursion normalized to
function recursion in their corresponding languages, solving
the puzzle of Hanoi.

3

clearly reflect the overhead of coroutine yield and resume.
The 𝑂 (1) and 𝑂 (𝑛) overhead growths are clearly shown in
the results, and the overhead of C++20 coroutine can even
reach 50 times when the number of disks is 20. C++23 gen-
erator has 𝑂 (1) asymptotic growth, though, its overhead is
still much higher than that of stackful coroutine with Boost.
The results suggest that stackless coroutine is not efficient
for recursion. And we’ll also show in section 2.3 that it is
not efficient either for non-recursive multi-level invocation,
which is a common practice in non-trivial applications.

To further study C++23 std::generator (Gen23) and Boost,
we use the perf tool to respectively monitor them solv-
ing Hanoi(1~20). We see that Gen23 has executed ~15 bil-
lions of instructions in ~5.8 billions of cycles (2.58 per cy-
cle). And Boost has executed ~2.05 billions of instructions in
938 millions of cycles (2.19 per cycle). The former executes
much more instructions at a higher IPC (Instructions Per
Cycle) speed than the latter, indicating a more complex so-
lution. We also notice that Boost has a 5.36% miss rate for
branch prediction, which is much higher than that of Gen23
(0.76%). We believe it’s due to the context switching function,
jump_fcontext(), which jumps to a location different from
that of the previous run, thus hard to predict. We’ll solve this
problem with context-aware context switching. See details
in section 3.1.

2.3 Coroutines in the “Macroscope”
Wemeasure how coroutines perform in a scenario of multiple
conceptual threads of execution running concurrently. We
simulate a server-type workload with both coroutine models,
by creating 10 concurrent tasks, with each sending 100 MB
of data through a network connection to its client. We mimic
the non-blocking socket API that can send some number (>0)
of bytes in each invocation if it is ready for write (there’s
some room in its internal buffer), and we have to repeat
it in a loop until all data has been sent. In order that the
measurement is repeatable and not too fast, we assume that
every invocation to send_some() can send exactly 800 bytes,
and is preceded by an invocation to wait_for_ready() that
only switches execution to other tasks. This is effectively
the pattern of non-recursive multi-level invocation. As the
actual networking and event engine (e.g. epoll) are not the
target of this test, they are not included in order that we
focus on the coroutine part of the program.
Two implementations are involved in this measurement,

C++20 stackless coroutine and Boost.Context stackful corou-
tine. We employ simple round-robin scheduling for both of
them.
Fig. 6 shows the results of our measurement, including

those from Rust and C# as references only. Boost achieves the
best performance with stackful coroutine. We further study
the cases in C++ with perf tool, in order to investigate any
other reasons for such differences besides multi-level invoca-
tion. We find that C++20 coroutine incurs major overhead in

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

1

2

3

C++20  
coroutine

C++ Boost  
(stackful)

Rust C#

8.34

1.81all
scheduling
switching
(de)allocation
application

Figure 6. Execution time for simulation of concurrent
write_fully(). Rust (based on tokio) and C# (compiled to na-
tive code) are included as references only.

memory allocation/deallocation for coroutine context. This
indicates thatmemory pooling is very important for stackless
coroutine, the ideal pooling might be a linear data structure
for each conceptual thread of execution, and it grows with
co_await and shrinks with co_return, as suggested in [38].
We also find that the scheduler for C++20 coroutine in-

curs an overhead higher than that for Boost, despite we try
to make both of them as simple and identical as possible.
The question is answered with some extra counters: C++20
coroutine invokes scheduler several times more than Boost
coroutine. It turns out that every co_await in the program
makes the control return to the scheduler then calls the tar-
get coroutine from there. co_return and co_yield follow
the reversed control flow. It is possible for stackless corou-
tine to apply an optimistic optimization: invoke the target
first without returning to the scheduler, speculating that
the target will complete without actually co_yield-ing or
co_await-ing. This optimization can be applied repeatedly
until it eventually has to go back to the scheduler, by succes-
sive returning. This pattern is useful for submitting asynchro-
nous I/O operations that may complete immediately in some
cases (e.g. there’s enough internal buffer for write), so there
is no need to wait for its completion in this case. We don’t
employ this optimization because we are focusing on the
coroutine part of the program in the measurement, whereas
this optimization avoids the part in the case of successful
speculation.

We also notice with perf that the Boost-based case incurs
a miss rate of 13.08% for L1 data cache load, which is much
higher than the case with C++20 coroutine (0.01%). In such
a micro benchmark, all data loads in the kernel loop should
be cache-hit. We believe it’s due to not-too-coincidental col-
lisions in the set-associate algorithm of cache, and it should
be caused almost deterministically by the default alignment
of allocation for stack, combined with the homogenization
of the running coroutines. And we believe that’s why the

4

application part of stackful case is slower than that of stack-
less case. The issue probably influences context switching
too, because the context is also saved on stack. And the issue
probably occurs in many other benchmarks and applications
based on stackful coroutine or user-space threads, because
this pair of conditions are easy to meet in real applications,
especially on servers. We resolve this issue by simply in-
troducing a random factor to the starting address of stack,
making the stackful case significantly faster. See section 4
for further results.

3 Context-Aware Context Switching (CACS)
In this section, we present our proposals to make stackful
coroutine fast. We first propose a novel approach to perform
context-aware context switching (CACS), which saves and
restores a least necessary number of registers decided by
the compiler at the calling site. It makes use of inline assem-
bly, and spreads out the indirect jump of CACS, possibly
improving the rate of correct branch prediction. We then
apply CACS to asymmetric coroutines by proposing in-stack
generator, a new design that realize efficient yield() and re-
sume(), as well as stack reuse in the case of non-concurrent
generators. Thirdly we propose a new calling convention,
preserve_none, for functions that are expected to switch con-
text, so as to further improve performance. This is actually
an expansion of CACS for caller functions to make sure the
gains are not masked by them.

3.1 Design
As discussed in previous section, the classic context switch-
ing function saves and restores a fixed list of registers before
making an indirect jump to the target location. The function
is usually implemented in separate assembly code that is
completely unaware of the functions that invoke context
switching. All that it can do is saving and restoring every
callee-saved register as specified in the function calling con-
vention in use, treating every switching like a worst case
function call.
To address the problem and make every cycle count, we

propose a novel design of context-aware context switching
(CACS), which saves and restores a least necessary num-
ber of registers decided by the compiler at the caller site.
The compiler will generate instructions to save all necessary
registers to stack before executing context switching, and
restore them after switching. The compiler will also do a
trade-off between saving / restoring a register and recom-
puting it.

We design CACS as a code template using standard inline
assembly, as shown in Fig. 7. The instructions should be
adapted to coroutine type and control structure definition.
The key point is the bottom lines that define a list of all reg-
isters clobbered by the assembly code, so that the compiler
will save and restore the registers that are needed after the

1 __asm__ volatile (R"(
2 lea 1f(%%rip), %%rax # calculate switch−back address (label 1)
3 push %%rax # store it to stack
4 mov %%rsp, 0x10(%0) # store sp to control struct `from`
5 mov 0x10(%1), %%rsp. # load sp from control struct `to`
6 pop %%rax # load execution address from stack
7 jmp ∗%%rax # jump to target coroutine
8 1:
9)" : : "r "(from), "r "(to) : "rax "," rbx "," rcx "," rdx "," rbp "," rsi ",
10 " rdi "," r8 "," r9 "," r10 "," r11 "," r12 "," r13 "," r14 "," r15 "); # all regs

Figure 7. The code template for Context-Aware Context
Switching (CACS) using inline assembly. The key point is
informing the compiler that all registers will be clobbered
by this code template, so the compiler itself will generate
instructions before and after this code template to exactly
save and restore necessary registers at this site.

code template. CACS is inlined at the caller site, making
branch predictions for the jump easier to be correct. This
is more useful for asymmetric coroutine (generator) where
users directly make context switching without resorting to a
scheduler. In contrast, classic context switching is typically
implemented as a stand-alone assembly function, which is
written and compiled without any knowledge of the particu-
lar contexts that make the invocation. If CACS is invoked at
the end of a function, we can apply tail call optimization by
using the function’s return address as switch-back address,
avoiding an extra indirect jumping.

3.2 In-Stack Generator with CACS
In the previous section stackful coroutine implemented with
Boost remained ~4 times overhead compared to stackless
coroutine in the microbenchmark of sum of sequence. Ac-
cording to our analysis, stackless coroutine transforms the
code into event-driven form at compile time, and each invo-
cation to the generator corresponds still to a function call.
Whereas stackful coroutine creates a new stack for the gener-
ator, and each invocation corresponds to a context switching.
We monitor the execution of both test cases with perf tool,
and find that they show similar instruction per cycle (IPC):
2.29 for stackful and 2.49 for stackless. So their difference
in performance must come primarily from the number of
instructions executed in their kernel loops. By disassembling
we find that, the context switching function, jump_fcontext(),
consists 24 instructions, which gets executed twice in each
iteration. While a pair of function call and return in this case
costs only few instructions.

To resolve the problem, we (1) use CACS to greatly reduce
the number of instructions for saving and restoring registers;
we (2) reuse the current stack to further simplify switching
(in addition to eliminating the allocation of a new stack);
and (3) we exploit the fact that there exists a conceptual
relationship of caller-callee, by defining a simple & efficient

5

frame 0

frame 1

frame 2
…

fu
nc

tio
n

ca
ll

fu
nc

tio
n

re
tu

rn
stack
frame

pointer

switch back
and forth
(across frames)

stack pointer

grows as usual

rsi:	 each other’s stack frame

rdx:	caller’s execution location

rdi:	 callee’s execution location

rax:	 return value

Figure 8. Stack layout and context (frame) switching of
in-stack generator.

convention to ease the cooperation. We realize switchings
with only 3 instructions, for both back and forth. The cost
is similar to that of a function call / return, making stackful
coroutine as performant as stackless coroutine.

We define new primitives to allow a function (generator)
to switch the execution (yield) to the caller without terminat-
ing its execution, resulting a stack layout as shown in Fig. 8.
The yield operation carries an application-defined value in
register rax to the caller, as a form of “return value”. The op-
eration also carries additional information (frame pointer in
rsi and instruction pointer in rdx), so that the caller can later
resume the generator’s execution. The resume operation is
also a context switching, carrying additional information
(frame pointer in rsi and instruction pointer in rdi) for the
generator to yield back.

As shown in Fig. 9, an in-stack generator (seq or hanoi) is
implemented like a normal function, with the first argument
being GCTX*, which actually points to the caller’s stack
frame. And the function must create a GPromise object on
entry, so as for the generator to yield results back to the caller.

1 u64 seq(GCTX∗ fp, u64 c) {
2 GPromise gp(fp);
3 while(c)
4 gp. yield (c−−);
5 return 0;
6 }
7 u64 sum_seq(u64 c) {
8 u64 sum = 0;
9 Generator g(&seq, c);
10 for (; g; g.resume())
11 sum += g.value ();
12 return sum;
13 }

(a) Sum of Sequence

1 void _H(GPromise& g, char n,
2 char f , char t , char a) {
3 if (n == 0) return ;
4 _H(g, n−1, f , a , t);
5 g. yield (n+(f<<8)+(t <<16));
6 _H(g, n−1, a , t , f);
7 }
8
9 u64 hanoi(GCTX ∗fp, char n) {
10 GPromise g(fp);
11 _H(g, n, ' a ' , ' b ' , ' c ');
12 return 0;
13 }

(b) Hanoi (generator recursion)

Figure 9. Implementations with in-stack generator

The first yield jumps to the caller right after the invocation,
making it seem as if it comes back from a normal return. The
promise object gets destructed automatically on exit of the
generator, and on this occasion it overrides the generator
function’s return address with an actual position where the
caller has executed to. It also sets the resume address as
NULL, indicating termination of the generator.

Fig. 10 shows a direct comparison of compiled kernel loops
of the proposed stackful generator with CACS and those of
C++20 stackless generator, using the sequence’s sum test
case. As a result the two implementations have exactly the
same number of instructions, and they show similar perfor-
mance numbers (see section 4 for details).

3.3 Calling Convention for Switching Functions
The default calling convention (CC) is sub-optimal for func-
tions that are expected to switch context, either directly or
indirectly. The default CC is designed for general cases, in
which some registers are expected not to be modified by the
callee function. This condition is not met if the execution of
callee clobbers all registers, and context switching is one of
such cases.

The optimal strategy to call a switching function is to ex-
pect all registers will be clobbered, and define all registers as
caller-saved, so as to avoid unnecessary saving and restoring.
We have designed such a new CC named as preserve_none,
meaning that the function will preserve none of the registers,

// generator ' s kernel loop
<+32>: movq %rax, −8(%rbp)
<+36>: movq −8(%rbp), %rax // ??
<+40>: leaq 5(%rip), %rdx ;<+52>
<+47>: xchgq %rbp, %rsi
<+50>: jmpq ∗%rdi
<+52>: movq −8(%rbp), %rax
<+56>: decq %rax
<+59>: jne 0x7d0; <+32>

// sum()' s kernel loop
<+32>: addq %rax, %rcx
<+35>: movq %rcx, −0x8(%rbp)
<+39>: leaq 5(%rip), %rdi ;<+51>
<+46>: xchgq %rbp, %rsi
<+49>: jmpq ∗%rdx
<+51>: movq −8(%rbp), %rcx
<+55>: testq %rdx, %rdx
<+58>: jne 0x9e0 ;<+32>

(a) Stackful with CACS

// generator ' s kernel loop
<+0>: cmpb $0x0, 0x28(%rdi)
<+4>: je 0x4d7c ;<+28>
<+6>: movq 0x20(%rdi), %rax
<+10>: decq %rax
<+13>: je 0x4d85; <+37>
<+15>: movq %rax, 0x20(%rdi)
<+19>: movq %rax, 0x10(%rdi)
<+23>: movb $0x1, 0x28(%rdi)
<+27>: retq

// sum()' s kernel loop
<+48>: movq 0x10(%r14), %rbx
<+52>: movq %r14, %rdi
<+55>: callq ∗(%r14)
<+58>: addq %rbx, %r15
<+61>: cmpq $0x0, (%r14)
<+65>: jne 0x1770 ;<+48>

(b) Stackless with C++20

Figure 10. The disassembly code of the kernel loops of in-
stack generator (a) and stackless generator (b). They have
identical number of instructions. Note that there is a re-
dundant instruction in stackful generator at <+36>, due to
limitation of compiler optimization.

6

extern Coroutine∗ CURRENT;
#define CO \

__attribute__ ((preserve_none))
CO void yield () {
auto from = CURRENT;
auto to = from−>next;
if (from == to) return ;
CURRENT = to;
from−>state = READY;
to−>state = RUNNING;
CACS_tail(from, to);

}

<+0>: movq 0x1799(%rip), %rsi
<+7>: movq (%rsi), %rdi
<+10>: cmpq %rsi, %rdi
<+13>: je 0x199f ;<+47>
<+15>: movq %rdi, 0x178a(%rip)
<+22>: movl $0x0, 0x18(%rsi)
<+29>: movl $0x1, 0x18(%rdi)
<+36>: movq %rsp, 0x8(%rsi)
<+40>: movq 0x8(%rdi), %rsp
<+44>: popq %rax
<+45>: jmpq ∗%rax
<+47>: retq

Figure 11. The yield() function with preserve_none calling
convention (left) is compiled to 12 instructions (right) .

and the callers must spill all necessary registers themselves.
Applying this new CC to a switching function is either ben-
eficial (if the caller is simple) or not worse (if the caller is
complex), because the number of spilled registers in the new
CC can not be greater than the total number of caller-saved
registers and callee-saved registers in the default CC. Note
that non-switching functions, such as malloc, should use
the default CC as before.
The new CC acts as an expansion of CACS for the caller

functions to unleash the full potential. It is important for
simple switching functions. Take the yield() function in sym-
metric coroutine for example, which does simple scheduling
(e.g. round-robin) then switch the context. It doesn’t save /
restore any registers by itself, but adopting CACS will make
it so for all necessary registers to comply to the default CC.
As a result, there would be hardly performance gain, because
the cost is only teleported from context_switch() to yield().
As shown in Fig. 11, a possible yield() function with pre-

serve_none CC could be compiled to only 12machine instruc-
tions, containing no register saving at all. The callers will
save and restore registers according to their real needs. The
implementation also makes use of the fact that the switch-
ing is the tail of the function, by combining “jumping to
target context” and “returning to the caller” as a single step
— jmpq *%rax, without resorting to the final retq2. If yield()
uses the default CC, its compiled code will have 12 more in-
structions for spilling 6 registers as required, and the tail-call
optimization will become infeasible either.

Applying the new CC is simply to add a new attribute to
the target function, and the syntax can be further simplified
by using the macro CO, as shown in Fig 11. The burden of
applying the new CC is much less than that of applying
stackless coroutine, which forces to change the return types
of all involving functions, as well as the syntax of every

2jmpq is faster than retq in this case, because its general-purpose branch
predictor has a somewhat higher hit rate than that of retq, which uses
Return Stack Buffer (RSB) for branch target prediction, and it is supposed
to miss in this case due to the switching of stack.

invocation. Whereas the proposed CC is only an option to
further improve performance.
The new CC is also applicable to in-stack generators, be-

cause they switch context too, and the switching functions,
yield() and resume() in our work, clobber all registers as well.
This behavior makes preserving registers useless for them.

3.4 Implementation
We have implemented CACS for Clang/GCC compilers, x86-
64 architecture, SysV (AMD64) ABI. The implementation is
a library of 2 header files, respectively for symmetric and
asymmetric coroutine (generator). The former is ~40 lines,
including tail-call optimization; and the latter one is ~90 lines,
including support for both sides of the generators. CACS
doesn’t require modifications to compiler tool chain. The
implementation is based on Photon [10], assuming control
struct of symmetric coroutine defined in it. Specifically, we
store switch-back address at top of stack, and stack pointer
(SP) in the control struct by an offset of 0x10.

We have implemented in-stack generator in the library
too, using the core concept of CACS. The differences here
are: (1) we switch stack frames instead of the whole stack;
(2) a value is passed in a register along with each switching
from the generator to its caller; (3) as the switching target
is fixed and known at compile time for both sides, so we
can pass the switch-back address to the opposite side via a
register, in order to exploit a chance to avoid storing it to
memory. The implementation is a header file of ~90 lines.
We have implemented the new CC preserve_none in

Clang and its backend LLVM, primarily in 3 steps. Firstly
we define the new CC in LLVM’s header file CallingConv.h
by adding a new enum member PreserveNone. And we de-
fine the list for its callee-saved registers in the TableGen file
X86CallingConv.td, by inheriting the class CalleeSavedRegs
and setting the list as CSR_NoRegs, a predefined constant
in LLVM representing an empty list. Then we implement
the new CC’s behaviors in LLVM. Such as, extending the
function getCalleeSavedRegs() in class X86RegisterInfo so
that it recognizes the new CC as argument, and returns
an empty list of registers for callee to save. We also up-
date the instruction selector’s function canGuaranteeTCO()
in X86ISelLowering.cpp so that tail-call optimization can
be applied to invocations with the new CC. Finally we ex-
tend the frontend clang to accept the new CC as an at-
tribute of function. So that if a function is tagged as “__at-
tribute__((preserve_none))”, all invocations to that function
will be using the proposed CC.

We have also implemented some helper tools in Clang/L-
LVM compiler tool chain to assist applying the proposed
CC to large applications without modifying the source code.
First, we add an option for Clang to accept a list of functions
from a file. All functions that occur in the list during compila-
tion will be implicitly applied with the proposed CC. Second,
we add another option for the compiler to automatically

7

Ti
m

e
C

os
t /

 It
er

at
io

n
(n

s)

0

3

6

9

12

C++20 - for  
(stackless)

CACS 
(stackful)

C++20 - while 
(stackless)

Boost 
(stackful)

Figure 12. CACS (in-stack generator) performs equally well
with C++20 stackless coroutine in sum of sequence.

applying the preserve_none CC (APN) to proper functions.
When a function foo with default CC calls another function
with preserve_none CC, we infect foo as preserve_none if
(1) its address is never taken, not even by a virtual function
table; (2) its symbol is not exported in the final outcome
(the main function is considered exported). If these functions
do need preserve_none, we must mark it explicitly in the
source code. APN is realized as an extra pass in LLVM, just
before instruction selector (PreISel). We first create a work
list including all functions that are explicitly marked as pre-
serve_none. Then for each function in the list, we enumerate
its callers to determine whether it is possible to infect the
caller as preserve_none, and if so, we add it to the work list
as well after infection. The process repeats until the work
list becomes empty.

4 Evaluation
In this section we evaluate stackful coroutine equipped with
all the proposed optimizations, denoted as CACS in a unifica-
tion. Because in-stack generator is the application of CACS
in asymmetric coroutine, and the preserve_none CC is an
expansion of CACS for the caller functions to unleash the
full potential of CACS. The CC seems to be useful only with
CACS together. We also include stack address randomization
in the evaluation, although it is an independent technique
and applicable to other systems. We compare the results
with Boost and C++20 stackless coroutines. Our testbed is
a physical server with dual Intel Xeon CPU @ 2.2GHz and
128GB of memory.

4.1 Sum of Sequence
Weevaluate CACS (in-stack generator) using sum-of-sequence
benchmark, and compare it with other implementations. We
also include a derived edition of the test case in C++20, by
replacing the for-loop in producer() with a seemingly equiv-
alent while-loop.

Re
la

tiv
e

Ti
m

e
C

os
t

0

6

12

18

24

of Disks in the Towers of Hanoi
2 4 6 8 10 12 14 16 18 20

C++20 Coroutine
C++23 std::generator
C++ Boost (stackful)
C++ CACS (stackful)
C# Generator

Figure 13. Time cost of coroutine recursion normalized to
function recursion + callback, solving the puzzle of Hanoi.
The proposed CACS (in-stack generator) performs best.

Fig. 12 shows the results. It is as speculated in previous
section that CACS performs similarly well with C++20 corou-
tine. It is unexpected that the two editions in C++20 perform
differently. This suggests that compiler optimization has a
room for improvement, and this may also suggest that mea-
surement at nano-second-scale is difficult, as slight changes
may lead to noticeable difference.
We anticipate that CACS and in-stack generator would

perform better in non-trivial applications, because its target
code has less branches and memory accesses than those in
stackless coroutine (4+4 vs 5+7, as shown in Fig. 10). These
instructions tend to have higher miss rate in reality, due
to resource contentions in TLB, branch predictor, multiple
levels of caches, etc.

4.2 Hanoi
We evaluate CACS (in-stack generator) using the puzzle of
Hanoi, and compare it with other implementations. Fig. 13
shows the results of relative time costs of coroutines normal-
ized to that of function recursion + callback. CACS is roughly
twice as fast as Boost, and they are both much faster than
stackless coroutines. C# performs close to C++ in function
recursion, so we are able to include its result as a reference.
(Rust currently doesn’t support yielding from recursive gen-
erator.)
And we also see with perf tool that CACS reduces the

number of branch-misses from ~11.8M in Boost to ~1.62M
in CACS, exhibiting a significant improvement, though it is
still lightly worse than function recursion and callback. The
reason is that the switching of context clobbers all registers
on both sides, whereas the the callback can preserve some
registers on the caller’s side. We believe there is room for fur-
ther improvement on this issue, and the optimal performance
should be very close to that of function recursion.

8

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

200

400

600

800

C++20  
coroutine

C++ Boost  
(stackful)

C++ CACS  
(stackful)

scheduling
switching
(de)allocation
application

Figure 14. CACS performs better in write_fully() than
C++20 coroutine and Boost.

Ti
m

e
C

os
t o

f y
ie

ld
 (n

s)

0

2

4

6

8

10

Photon 
(baseline)

+stack  
random

+CACS +small_stack

1.521.80

4.70

8.97

Figure 15. Breakdown of proposed optimizations in yield()

4.3 write_fully()
We evaluate CACS using write_fully() in symmetric corou-
tines, and compare it with other implementations. Fig. 14
shows the results. CACS ismuch faster than Boost and C++20
stackless coroutine. And the breakdown shows that CACS
is fast in both scheduling (together with context switching)
and application, we believe it is due to stack entry random-
ization that avoids coincidental cache collisions between the
concurrent coroutines. And we confirm this speculation with
perf tool. It shows that the miss rate of L1 data cache drops
from 15.83% of Boost to ~0.00% of CACS.

4.4 yield()
We evaluate CACS with yield() operation, by making 10
coroutines yielding to one another in a loop. We repeat the
loop many times and calculate the average time cost of a
single yield. We then subtract the cost of an empty loop from
the result, because it can not be ignored in the measurement
at nano-second-scale. We have managed to avoid any com-
piler optimizations applying to the empty loop, and we also
emulate the effect of losing all registers after calling to a pre-
serve_none function, with a piece of volatile inline assembly
code.

Re
qu

es
ts

 /
Se

co
nd

100K

200K

300K

400K

500K

600K

(a) HTTP Client

Photon CACS  
w/o APN

CACS

Re
qu

es
ts

 /
Se

co
nd

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

(b) RPC Client

Photon CACS  
w/o APN

CACS

Figure 16. Performance improvements of CACS in HTTP
and RPC client respecitvely. In the cases of “CACS w/o APN”
we don’t enable the automatic applying of preserve_none,
thus only the coroutine library has that CC explicitly. The
two cases of CACS improves performance respectively by
11.2% and 18.8% for HTTP client; and 26.2% and 45.2% for
RPC client.

In order to break down the optimizations, we first evaluate
vanilla Photon without these optimizations. Then we apply
them one by one, including a special case of small stack. We
coincidentally find that stack size can influence performance,
and a small one that is not aligned3 to special numbers can
often result in better performance. In this benchmark we use
4,112 bytes for the case of small stack.

Fig. 15 shows the results. The time cost of a single yield is
reduced dramatically from 8.97ns to 1.52ns.

4.5 HTTP and RPC Clients
We evaluate CACS with HTTP and RPC client respectively,
which can represent close-to-reality workloads.We use those
components also from Photon [10], because they allow us to
easily mock their networking layers so as for the results are
not affected and bounded by the physical network hardware.
We have managed to avoid most of the data-copy (except
the header of HTTP response), effectively assuming modern
offloaded zero-copy network transport. We run the bench-
marks with a single CPU core, as parallelism is orthogonal to
our proposals. The RPC framework avoids excessive string
parsing operations, making every cycle count for the pay-
load. It is especially useful for high-performance I/O systems.
The test cases are both sending requests to obtain 1MB of
data in each response. The RPC messages are real ones used
in our distributed storage system, deployed at scale in our
production environments. As shown in Fig. 16, CACS clearly
improves real-world HTTP and RPC clients.

3but required to be 16-byte-aligned
9

5 Related Work
Coroutine is a form of generalized subroutine that dates back
to decades ago. There are two types of coroutine: stackful
and stackless. The former is also known as user-space thread.
It assigns a separate stack to every coroutine. Whereas the
latter makes the default stack shared by all coroutines. It re-
alizes so usually by transforming the code into event-driven
form at compile time. Both coroutine types depend on un-
derlaying asynchronous interface to achieve the illusion of
synchronous I/O (storage, network, etc.). There has been a
long-standing debate over which model is better for concur-
rent programming, events or threads. The revival of corou-
tine in recent years may give us a different view on this
problem.

5.1 Stackful Coroutine and User-Space Threading
One of the most influential stackful coroutine implemen-
tation is perhaps the cooperatively scheduled threads and
processes in Windows 3.x, which dominated PC market
along with the success of Windows. This form of thread-
ing was easier to implement and more efficient to run in
resource-constrained devices, like PCs at that time. However,
the model requires each thread / process (coroutine) to coop-
erate with others by voluntarily yielding its control of CPU
to others at appropriate occasions. Otherwise a buggy (non-
cooperative) application can block the entire system from
responding. So this cooperative threading got deprecated
since Windows 95 in preference of preemptive threading.
As a matter of fact, the non-cooperation problem is tolera-
ble within a single process, and concurrent programming
nowadays is becoming increasingly important, thus we have
the revival of stackful coroutine (stackless too), with Go [15]
being a representative.

Go provides coroutine (goroutine) as a first-class construct
since its first language design. Goroutine is Go’s answer
to concurrent programming. It supported only one CPU
core (no parallelism) at first, and multiple cores later. It was
cooperatively scheduled at first, and strengthened recently
with preemption [7]. C/C++ alway have numerous libraries
of coroutine. Such as state-thread, originally developed by
Netscape as part of NSPR library, and later maintained by
SGI, Yahoo. Boost.Coroutine 1, 2 and Boost.Context [13] are
a set of authoritative coroutine libraries for modern C++.
There are many other languages also have (some sort of)
support for stackful coroutine, such as Java (since v19) [8],
Lua [17], PHP (swoole) [19], etc.

While most coroutines are cooperatively scheduled, which
requires a task explicitly yields its control of CPU so that
one of the others can get executed. There are work to add
preemption to coroutines. Most proposals [22, 25, 36] are
based on timer signal, and this technique has been applied
in Go since 1.14 [7]. This approach is limited due to the
fact that, some functions are not safe to get preempted by

signals, such as malloc(). [43] proposed another approach
called KLT-switching to overcome this issue.

Stackful coroutine assigns a separate stack to every corou-
tine. The stack must be large enough for maximal possible
usage, so it may be a waste of memory. Go initially uses
segmented stack to save stack memory. New stack segments
are automatically allocated as function invocations need.
They are linked for ease of management and traverse. Go
switched to continuous stack that can grow and shrink after
V1.3. The growing is realized with memory copy, thus incurs
some overhead, and is incompatible with C/C++, because it’s
impossible to update references to stack-allocated objects.
Some C/C++ compilers, such as GCC [14] and Clang [4], also
support segmented stack, but this feature have yet to become
the mainstream. We want to solve this problem with the help
of modern hardware. As modern 64-bit address-space is big
enough for the allocation of many large continuous stacks,
we can make use of madvise() to request the OS kernel to
release unused physical memory pages in the stacks, so that
they consume only address space.When the space is accessed
again in the future, OS kernel will implicitly allocate new
pages via page fault trap to meet the needs. We believe this
is a sweet point for the trade off between memory consump-
tion, execution efficiency and solution compatibility. And
we call for kernel support for more efficient reclamation of
the pages.
Ref. [27] shares a common goal with CACS to minimize

the number of spilled registers when switching context. It
proposed a new primitive in compiler backend (LLVM) specif-
ically for context switching called SwapStack. It also man-
aged to expose the primitive to users throughout the whole
compiling pipeline. On the other hand, CACS constitutes
of a few functions in templatized inline assembly code of
tens of lines as (part of) a library. And it’s only a matter
of syntax adjustment for CACS to support other compilers
(e.g. clang, gcc, cl, etc.) and platforms (e.g. Linux, Windows,
macOS, etc.). In addition, we propose in-stack generator for
efficient asymmetric coroutine, which was not addressed in
[27]. And we also propose preserve_none calling convention
for further improvements of all switching functions. It is
especially important to simple functions, as shown in Fig. 11,
the yield() function would have been compiled to twice more
instructions (24 vs 12), if not with preserve_none.

This paper focuses on performance measurement and op-
timizations of coroutine, specifically for stackful coroutine
in compiled languages. Our work should be applicable for
JIT compilation of high-level languages. And we believe it is
also enlightening for dynamically typed languages.

5.2 Stackless Coroutine and Event-Driven Paradigm
Stackless coroutine in compiled languages is translated into
event-driven code during compilation, and there exists some
work [23, 24, 29, 31, 34, 42] that does similar (source-to-
source) translation before the advent of stackless coroutine

10

in these languages. They usually provide new keyword(s)
that act(s) like co_await in C++20 stackless coroutine, such
as tamed in [31] and async in [29].
The translations are introduced for dealing with the so-

called “stacking-ripping” [21] problem that arises in asyn-
chronous even-driven code. They proposed to automatically
rip the stacks with (pre)compilers instead of doing it manu-
ally, as it is complex and error-prone. Stackless coroutine can
be regarded as the lastest evolution of compiler translation
in order to get rid of this problem.

Stackful coroutines internally deals with events, too. Take
Photon [10] for example, it has several event engines to in-
teroperate with asynchronous & event-driven APIs provided
by host OS kernel, such as libaio or io_uring, etc. When an
event occurs, Photon switches to the handling coroutine by
loading its stack address and jumping to its execution ad-
dress. This is very similar to invoking a callback function
in event-driven paradigm, in the perspective of machines.
The primary difference is that we load the address of context
into rsp (effectively r7) instead of rdi (effectively r5; the 1st
argument by convention).

5.3 Others
It has been proved in [32] that events and threads are duals,
though, the debate [21, 41, 44–46] for the better one still
seems endless. Today’s debate between stackless and stack-
ful coroutines is essentially a continuation of the former
one. We believe both events and threads have their best-fit
scenarios. In addition to the optimizations for stackful corou-
tine, Photon also supports scheduling of stackless coroutine
in conjunction with stackful coroutine, and it provides an
optimal memory pool for efficient allocation of contexts in
stackless coroutine.

Minimizing the number of registers to spill during context
switching is also a major goal in preemptive threading, such
as [33]. It is completely different compared to CACS, due to
their preemptive nature.

6 Limitations and Future Work
In this paper, we propose efficient techniques to make stack-
ful coroutine fast. Although we have demonstrated promis-
ing results, there exists limitations that need further improve-
ments.

We call for compiler / language support for in-stack gener-
ator. In section 3.2 we have proprosed in-stack generator that
makes efficient use of registers to pass information forth-
and-back. When it comes to generator recursion, we have to
resort to shared memory for passing information about the
promise object between the frames of recursion. The object
actually has a small size of 16 bytes, and it’s better to share
it in a pair of registers. If the users create more than one
concurrent generator, it’s better for the compiler to detect

it and create additional stack(s) as needed. Compilers can
further inline a whole generator if proper conditions are met.
We call for compiler and runtime support for coroutine-

local variables, in correspondence to thread-local variables.
And for an optimization that automatically applies the pro-
posed calling convention to suitable functions.

We call for OS kernel support for more efficient page recla-
mation. Stackful coroutine depends on madvise() to request
the OS kernel to reclaim unused physical memory pages in
the stacks (but not releasing the virtual addresses). This in-
curs an overhead to flush involved TLB entries in all threads
of current process. And the overhead increases with the num-
ber of threads / CPU cores increasing. There is possibility for
more efficient flushing policy. For example, current thread
can flush TLB immediately in the madvise() syscall, whereas
others try to postpone the flushing until later they enter the
kernel themselves. There would be an inconsistent view of
the process of freeing the unused pages. This should be tol-
erable in many scenarios. And the reclamation should take
place in an order from the coldest pages to the hottest pages.

We call for architectural support for explicit management
of Return Stack Buffer (RSB). Modern CPUs generally incor-
porate an implicit RSB to predict target addresses of return
instructions, as a special form of branch predictor. RSB is
supposed to be, after a context switching, entirely invalid and
inferior to the general predictor in this case. That’s why clas-
sic context switching functions prefer the pop-and-jmp in-
struction pair to the usual ret. If it’s possible to directly clear
RSB, or better switch RSB as part of the context, that would
be very helpful, not only for user-space context switching,
but also for kernel-space security. There have been reports
of vulnerabilities regarding RSB, and the kernel developers
tried very hard to effectively clear RSB [26], at the cost of an
“impressive” amount of memory.

This work is carried out on the x86-64 architecture with
SysV (AMD64) ABI, which is our primary environment. We
expect higher speedups for other ABI (e.g. Microsoft x64 ABI)
or architecture (e.g. AArch64), as they have more registers
to spill during a classic context switching.

7 Conclusion
In this paper we carry out in-depth measurement on corou-
tine implementations, finding out key issues regarding per-
formance. And we propose effective optimizations for stack-
ful coroutine, making its weak cases no longer weak, and
strong cases even stronger.We also suggest some future work
for possible further improvement. We implement the pro-
posed optimizations in Photon and Clang, respectively. The
source code is open-sourced on GitHub for blinded review.
We’ll try to merge our work to corresponding upstreams
after review.

11

References
[1] Alibaba Dragonwell8 Extended Edition Release Notes. https://github

.com/dragonwell-project/dragonwell8/wiki/Alibaba-Dragonwell8-
Extended-Edition-Release-Notes, Accessed: 2023-11-28.

[2] Announcing Rust 1.39.0. https://blog.rust-lang.org/2019/11/07/Rust-
1.39.0.html, Accessed: 2023-11-28.

[3] C++20 standard. https://isocpp.org/std/the-standard, Accessed:
2023-11-28.

[4] Clang: a C language family frontend for LLVM. https://clang.llvm.org/,
Accessed: 2023-11-28.

[5] Clobbers and Scratch Registers (in inline assembly code template).
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Clobbers-
and-Scratch-Registers, Accessed: 2023-11-28.

[6] Data Plane Development Kit. https://www.dpdk.org/, Accessed:
2023-11-28.

[7] Go 1.14 Release Notes. https://golang.org/doc/go1.14, Accessed:
2023-11-28.

[8] Java 21 Release Notes. https://www.oracle.com/java/technologies/jav
ase/21-relnote-issues.html, Accessed: 2023-11-28.

[9] JavaScript ES2017 Specification. https://262.ecma-international.org/8.
0/, Accessed: 2023-11-28.

[10] Photon libOS. https://photonlibos.github.io/, Accessed: 2023-11-28.
[11] Storage Performance Development Kit. https://spdk.io/, Accessed:

2023-11-28.
[12] Swift 5.5 Release Notes. https://www.swift.org/blog/swift-5.5-

released/, Accessed: 2023-11-28.
[13] The Boost libraries. https://www.boost.org/users/history/version_1_8

1_0.htm/, Accessed: 2023-11-28.
[14] the GNU Compiler Collection. https://gcc.gnu.org/, Accessed: 2023-

11-28.
[15] The Go Programming Language. https://go.dev/, Accessed: 2023-11-

28.
[16] The history of C#. https://learn.microsoft.com/en-us/dotnet/csharp

/whats-new/csharp-version-history, Accessed: 2023-11-28.
[17] The Lua programming language. https://www.lua.org/, Accessed:

2023-11-28.
[18] The micro benchmarks once used by C++ committee to demonstrate

the advantage of stackless coroutine over stackful coroutine. https:
//wandbox.org/permlink/J2xY7U4Hf6rryeCr, Accessed: 2023-11-28.

[19] The Swoole Extension of PHP. https://www.php.net/manual/en/book
.swoole.php, Accessed: 2023-11-28.

[20] What’s new in Python 3.5. https://docs.python.org/3/whatsnew/3.5.h
tml, Accessed: 2023-11-28.

[21] Atul Adya, Jon Howell, Marvin Theimer,William J Bolosky, and John R
Douceur. Cooperative task management without manual stack man-
agement. In USENIX Annual Technical Conference, General Track, pages
289–302, 2002.

[22] Aravindh Anantaraman, A Mahmoud, Ravi Venkatesan, Yifan Zhu,
and Frank Mueller. Edf-dvs scheduling on the ibm embedded powerpc
405lp. In Proceedings of the IBM P= ac2 Conference. Citeseer, 2004.

[23] Alexander Bernauer and Kay Römer. A comprehensive compiler-
assisted thread abstraction for resource-constrained systems. In Pro-
ceedings of the 12th international conference on Information processing
in sensor networks, pages 167–178, 2013.

[24] Alexander Bernauer, Kay Römer, Silvia Santini, and Junyan Ma.
Threads2events: An automatic code generation approach. In Pro-
ceedings of the 6th Workshop on Hot Topics in Embedded Networked
Sensors, pages 1–5, 2010.

[25] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky.
Lightweight preemptible functions. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 465–477, 2020.

[26] Jonathan Corbet. Stuffing the return stack buffer. https://lwn.net/Arti
cles/901834/, Accessed: 2023-11-28.

[27] Stephen Dolan, Servesh Muralidharan, and David Gregg. Compiler
support for lightweight context switching. ACM Transactions on
Architecture and Code Optimization (TACO), 9(4):1–25, 2013.

[28] Jianbo Dong, Zheng Cao, Tao Zhang, Jianxi Ye, Shaochuang Wang, Fei
Feng, Li Zhao, Xiaoyong Liu, Liuyihan Song, Liwei Peng, et al. Eflops:
Algorithm and system co-design for a high performance distributed
training platform. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 610–622. IEEE, 2020.

[29] Tim Harris, Martin Abadi, Rebecca Isaacs, and Ross McIlroy. Ac:
composable asynchronous io for native languages. ACM SIGPLAN
Notices, 46(10):903–920, 2011.

[30] Oliver Kowalke. fibers without scheduler. In C++ commiittee confer-
ence, page P0876R0, 2018-02-11.

[31] Maxwell N Krohn, Eddie Kohler, and M Frans Kaashoek. Events can
make sense. In USENIX Annual Technical Conference, pages 87–100,
2007.

[32] Hugh C Lauer and Roger M Needham. On the duality of operating
system structures. ACM SIGOPS Operating Systems Review, 13(2):3–19,
1979.

[33] Zhen Lin, Lars Nyland, and Huiyang Zhou. Enabling efficient pre-
emption for simt architectures with lightweight context switching. In
SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 898–908. IEEE,
2016.

[34] William P McCartney and Nigamanth Sridhar. Stackless multi-
threading for embedded systems. IEEE Transactions on Computers,
64(10):2940–2952, 2014.

[35] Memblaze. PBlaze®7 7940 Series NVMe™ SSD: PCIe 5.0, High Perfor-
mance for any Workload. https://www.memblaze.com/en/product/pb
laze7/658.html, Accessed: 2023-11-28.

[36] Malcolm S Mollison and James H Anderson. Bringing theory into
practice: A userspace library for multicore real-time scheduling. In
2013 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 283–292. IEEE, 2013.

[37] Ana Lúcia DeMoura and Roberto Ierusalimschy. Revisiting coroutines.
ACM Transactions on Programming Languages and Systems (TOPLAS),
31(2):1–31, 2009.

[38] Oliver Kowalke Nat Goodspeed. Response to “fibers under the magni-
fying glass”. In C++ commiittee conference, page P0866R0, 2019-01-06.

[39] Gor Nishanov. Fibers under the magnifying glass. In C++ commiittee
conference, page P1364R0, 2018-11-20.

[40] Gor Nishanov. Response to response to “fibers under the magnifying
glass”. In C++ commiittee conference, page P1520R0, 2019-03-08.

[41] John Ousterhout. Why threads are a bad idea (for most purposes).
In Presentation given at the 1996 Usenix Annual Technical Conference,
volume 5, pages 33–131. San Diego, CA, USA, 1996.

[42] János Sallai, Miklós Maróti, and Ákos Lédeczi. A concurrency ab-
straction for reliable sensor network applications. In Reliable Systems
on Unreliable Networked Platforms: 12th Monterey Workshop 2005, La-
guna Beach, CA, USA, September 22-24, 2005. Revised Selected Papers
12, pages 143–160. Springer, 2007.

[43] Shumpei Shiina, Shintaro Iwasaki, Kenjiro Taura, and Pavan Balaji.
Lightweight preemptive user-level threads. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 374–388, 2021.

[44] J Robert Von Behren, Jeremy Condit, and Eric A Brewer. Why events
are a bad idea (for high-concurrency servers). In HotOS, pages 19–24,
2003.

[45] Rob Von Behren, Jeremy Condit, Feng Zhou, George C Necula, and
Eric Brewer. Capriccio: scalable threads for internet services. ACM
SIGOPS Operating Systems Review, 37(5):268–281, 2003.

[46] Matt Welsh, David Culler, and Eric Brewer. Seda: An architecture for
scalable, well-conditioned internet services. In Proceedings of the 18th
Symposium on Operating Systems Principles (SOSP-18), Lake Louise,

12

https://github.com/dragonwell-project/dragonwell8/wiki/Alibaba-Dragonwell8-Extended-Edition-Release-Notes
https://github.com/dragonwell-project/dragonwell8/wiki/Alibaba-Dragonwell8-Extended-Edition-Release-Notes
https://github.com/dragonwell-project/dragonwell8/wiki/Alibaba-Dragonwell8-Extended-Edition-Release-Notes
https://blog.rust-lang.org/2019/11/07/Rust-1.39.0.html
https://blog.rust-lang.org/2019/11/07/Rust-1.39.0.html
https://isocpp.org/std/the-standard
https://clang.llvm.org/
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Clobbers-and-Scratch-Registers
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Clobbers-and-Scratch-Registers
https://www.dpdk.org/
https://golang.org/doc/go1.14
https://www.oracle.com/java/technologies/javase/21-relnote-issues.html
https://www.oracle.com/java/technologies/javase/21-relnote-issues.html
https://262.ecma-international.org/8.0/
https://262.ecma-international.org/8.0/
https://photonlibos.github.io/
https://spdk.io/
https://www.swift.org/blog/swift-5.5-released/
https://www.swift.org/blog/swift-5.5-released/
https://www.boost.org/users/history/version_1_81_0.htm/
https://www.boost.org/users/history/version_1_81_0.htm/
https://gcc.gnu.org/
https://go.dev/
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://www.lua.org/
https://wandbox.org/permlink/J2xY7U4Hf6rryeCr
https://wandbox.org/permlink/J2xY7U4Hf6rryeCr
https://www.php.net/manual/en/book.swoole.php
https://www.php.net/manual/en/book.swoole.php
https://docs.python.org/3/whatsnew/3.5.html
https://docs.python.org/3/whatsnew/3.5.html
https://lwn.net/Articles/901834/
https://lwn.net/Articles/901834/
https://www.memblaze.com/en/product/pblaze7/658.html
https://www.memblaze.com/en/product/pblaze7/658.html

Canada, 2001.

13

	Abstract
	1 Introduction
	2 Performance Measurement of Coroutines
	2.1 Coroutines under the Microscope
	2.2 Coroutines in the Telescope
	2.3 Coroutines in the ``Macroscope''

	3 Context-Aware Context Switching (CACS)
	3.1 Design
	3.2 In-Stack Generator with CACS
	3.3 Calling Convention for Switching Functions
	3.4 Implementation

	4 Evaluation
	4.1 Sum of Sequence
	4.2 Hanoi
	4.3 write_fully()
	4.4 yield()
	4.5 HTTP and RPC Clients

	5 Related Work
	5.1 Stackful Coroutine and User-Space Threading
	5.2 Stackless Coroutine and Event-Driven Paradigm
	5.3 Others

	6 Limitations and Future Work
	7 Conclusion
	References

